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Abstract

It is tough to detect unexpected drug–drug interactions (DDIs) in poly-drug treatments because of high costs and clinical limitations.
Computational approaches, such as deep learning-based approaches, are promising to screen potential DDIs among numerous drug
pairs. Nevertheless, existing approaches neglect the asymmetric roles of two drugs in interaction. Such an asymmetry is crucial to
poly-drug treatments since it determines drug priority in co-prescription. This paper designs a directed graph attention network
(DGAT-DDI) to predict asymmetric DDIs. First, its encoder learns the embeddings of the source role, the target role and the self-roles
of a drug. The source role embedding represents how a drug influences other drugs in DDIs. In contrast, the target role embedding
represents how it is influenced by others. The self-role embedding encodes its chemical structure in a role-specific manner. Besides,
two role-specific items, aggressiveness and impressionability, capture how the number of interaction partners of a drug affects
its interaction tendency. Furthermore, the predictor of DGAT-DDI discriminates direction-specific interactions by the combination
between two proximities and the above two role-specific items. The proximities measure the similarity between source/target
embeddings and self-role embeddings. In the designated experiments, the comparison with state-of-the-art deep learning models
demonstrates the superiority of DGAT-DDI across a direction-specific predicting task and a direction-blinded predicting task. An
ablation study reveals how well each component of DGAT-DDI contributes to its ability. Moreover, a case study of finding novel DDIs
confirms its practical ability, where 7 out of the top 10 candidates are validated in DrugBank.
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Introduction
Single-drug therapy usually fails to treat complex dis-
eases, which involves sophisticated biological processes,
while poly-drug therapy is as one of the promising
treatments for complex diseases [1]. The primary task in
poly-drug treatment is to detect unexpected drug–drug
interactions (DDIs) [2]. Because the pharmacokinetic or
pharmacodynamic behaviors of a drug are changed by
its interacting partners, possible adverse reactions would
push patients in danger and even death [3]. Nevertheless,
the identification of DDI in the wet lab is still costly
and time-consuming. In recent years, computational
approaches, especially deep learning-based approaches,
are vigorously developed to perform preliminary DDI
screening on a large scale with significantly low cost
and less time. Current computational approaches (e.g.
deep learning-based) can predict DDIs, to the best
of our knowledge, by commonly treating two drugs

in interaction as two equal roles in pharmacology.
However, they ignore the pharmacological asymmetry
of interacting drugs.

Many biological experiments have proved the asym-
metry among DDIs. Wicha et al. [4] demonstrates that the
majority of drug combinations between antifungal and
nonantifungal drugs are of monodirectional interactions.
In the case study, they validated that Terbinafine can
mediate monodirectional antagonism through its effect
in the ergosterol pathway and works as the perpetrator
significantly increasing the INT value of Amphotericin B,
while its EC50 was not significantly altered. This result is
consistent with the statement in DrugBank [5], ‘The risk
or severity of myopathy, rhabdomyolysis, and myoglobin-
uria can be increased when Amphotericin B is combined
with Terbinafine.’ Formally, we define the asymmetric
interaction as the monodirectional interaction where the
perpetrator drug influences the victim drug, such as
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‘Terbinafine (perpetrator)→Amphotericin B (victim)’. In
addition, it is remarkable that the roles of perpetrator/
victim are interaction-specific since a drug can be the
perpetrator in one interaction and can be the victim in
another interaction.

More importantly, such an asymmetric interaction
further determines the taking sequence of drugs in a
poly-drug treatment. The study of the optimum time
sequence for the administration of vincristine and
cyclophosphamide in vivo [6] showed that the additive
effect did not appear when the drugs were administered
at the same time. In contrast, with the extension of the
time interval, the additive effect appeared. Specifically,
taking Vincristine first can have better antitumor
activity because the metabolism of Vincristine can be
increased when combined with Cyclophosphamide (i.e.
Cyclophosphamide→Vincristine). Similarly, a clinical
trial compared different administration sequences of
Cisplatin and 5-Fluorouracil on the efficacy and safety
of chemotherapy [7]. In detail, the overall effective
rate (31.3%), median survival time (239d) and Time-
To-Progression (175d) in group A (i.e. Cisplatin→5-
Fluorouracil) were significantly higher than those
(13.9%, 174d and 140d accordingly) in group B (i.e. 5-
Fluorouracil→Cisplatin). The observation is also consis-
tent with DrugBank, which states ‘the risk or severity
of adverse effects can be increased when Cisplatin is
combined with Fluorouracil.’ More similar strategies are
proved in various treatments, such as the sequential
medication strategy of six MET inhibitor for non-small-
cell lung cancer [8], decreasing drug resistance of
antibiotics [9], eradication of helicobacter pylorie [10]
and acute kidney injury [11]. In summary, it is crucial to
determine the drug sequence that is an indispensable
task in poly-drug treatments. Therefore, it is urgent to
develop novel deep learning-based approaches to infer
asymmetric DDIs.

Related works
Various approaches based on deep learning for DDI pre-
diction have been developing in recent years. They can
be approximately classified into two groups: molecule
feature-based and network structure-based.

Early molecule feature-based approaches (e.g. Deep-
DDI [12]) directly use deep neural networks to predict
interactions by taking drug pairs as samples represented
by feature engineering. After that, graph neural net-
works (GNNs), including graph convolutional networks
(GCNs) and graph attention networks (GATs) as well as
generative adversarial networks (GANs), are particularly
appropriate to characterize drug molecules in an end-
to-end manner. For example, Arnold et al. [13] designed
multi-layer GATs to represent drug molecules individ-
ually and a joint con-attention layer to capture how
the substructure pairs of two drugs contribute to their
interaction. Deng et al. [14] used four types of drug fea-
tures to construct deep neural network-based submodels

and learned cross-modality representations of drug
pairs. Chen et al. [15] utilized a Siamese GCN, which
can find important local atoms with the attention
mechanism, to learn pairwise drug representations.
Wang et al. [16] designed a bond-aware attentive message
propagating method to capture drug molecular structure
information under the framework of contrastive learn-
ing. However, molecule feature-based approaches ignore
the dependence between DDIs.

To address this issue, network structure-based approa-
ches organize DDI entries into an interaction network,
where nodes are drugs and edges are interactions. Node
embedding techniques are leveraged to represent drugs,
while DDI prediction is regarded as link prediction. For
example, Feng et al. [17] used a deep graph autoencoder
[18, 19] to obtain drug latent representations, of which
the operation of inner product is used to infer poten-
tial DDIs. Yu et al. [20] integrated the relation-aware
network structure information in a multirelational DDI
network to obtain the drug embedding. Lin et al. [21]
utilized knowledge graph (KG) with rich bio-medical
information (including enzymes, targets, genes) to
learn drug representations without considering drug
molecular structure information. Although all these
state-of-the-art approaches exhibit the encouraging
DDI prediction, they cannot handle pharmacological
asymmetric interactions between drugs because they
treat two drugs in an interaction equally.

It is crucial to infer asymmetric interactions because
they determine the taking sequence of drugs in a poly-
drug treatment. This paper aims to address the rep-
resentation of asymmetry DDIs. By organizing a set of
asymmetry DDIs into a directed DDI network, the pre-
diction of asymmetry DDIs can be regarded as directed
link prediction. Current works in directed link prediction
can be roughly categorized into random walk-based and
graph deep learning-based approaches. Random walk-
based approaches usually develop random walk vari-
ants to infer directed links between nodes. For example,
APP [22] captured asymmetric pairwise similarities and
high-order similarities between nodes based on a direc-
tional random walk. NERD [23] applied an alternating
random walk strategy, which can walk forward and back-
ward to learn node embeddings in their corresponding
source/target roles while fully exploiting the semantics
of directed graphs. Ghorbanzadeh et al. [24] proposed
a local similarity measure based on Hyperlink-Induced
Topic Search. However, these approaches fail to capture
the highly nonlinear characteristics in the graph.

Graph deep learning-based approaches provide a
new sight of node embedding in a directed graph by
generating two role-specific embeddings of a node
(i.e. source role and target role). One accounts for its
source role emitting links, while another is its target role
absorbing links. Gravity GraphVAE [25] directly extends
the graph variant autoencoder on the directed graph
to learn asymmetric embeddings. DGGAN [26], a GAN-
based directed graph embedding framework, leverages
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adversarial mechanisms to learn each node’s source
and target embeddings. However, these methods cannot
achieve the satisfactory performance of asymmetric DDI
prediction because of no consideration of the association
between drug features and node embedding.

To address the above issue, this work organizes asym-
metric DDIs into a directed graph and characterizes them
under two underlying assumptions. If drug u (perpetra-
tor) influences drug v (victim), we first assume that the
source role of drug u and the self-role of drug v are close
in the source embedding space. Parallelly, we assume
that the target role of drug v and the self-role of drug u
are close in the target embedding space. Based on these
assumptions, this work proposes a novel architecture of
directed GATs for predicting asymmetric drug–drug inter-
actions (DGAT-DDI). Our contributions are summarized
as follows:

• DGAT-DDI generates two asymmetric embeddings of
the source role and the target role for a drug pair,
respectively. Its source role indicates how it influ-
ences other drugs in DDIs. Its target role represents
how it is influenced by others. Its self-role is aligned
into the source role space and the target role space,
respectively, to reflect the proximity of the drug pair
being an asymmetric interaction.

• Moreover, DGAT-DDI learns the aggressiveness of the
source role and the impressionability of the target
role to reflect how the number of interaction partners
of a drug affects its interaction tendency.

• To the best of our knowledge, DGAT-DDI is the first
approach for predicting asymmetric interactions
among drugs. Its superiority is demonstrated by a
direction-specific predicting task, a direction-blinded
task as well as a case study of novel asymmetric DDI
prediction.

Method
Problem formulation
Considering asymmetric interactions among drugs, we
organize a set of DDI entries into a directed interaction
graph and attempt to predict its potential edges upon
node embeddings. Formally, denote a directed graph as
G = {V, E}, where V is the node set (drugs) and E is
the directed edge set (asymmetric interactions between
drugs). For nodes u, v ∈ V, (u, v) ∈ E represents a directed
edge from u to v. In other words, drug u influences v. For
convenience, we term u as the perpetrator drug and v as
the victim drug in such an asymmetry interaction.

The task of prediction is to find a model F that can pre-
dict the occurrence of any directed edges by embedding
nodes. Specifically, the task contains two subtasks. One
is the direction-specific task, which judges how possibly
an edge (u, v) with a specific direction from u to v occurs
(Fig. 1A). Another, a more important but harder one, is
a direction-blinded task, which determines how possible

Table 1. Notations of DGAT-DDI

p p=1024, which the number of pre-defined substructures
in Morgan fingerprint

d d=16, which is the output dimension of embeddings from
GATs and MLP

Wr Wr ∈ R
(d+1)×p, which is the linear transformation matrix

in the GATs−→a r
−→a r ∈ R

2(d+1), which is the single-layer feedforward neural
network in the GATs

z0
u z0

u ∈ R
p, which is the initial feature of the node u

su/ tu su/tu ∈ R
d, represents the source/target role of the node u

zu zu ∈ R
d, represents the self role of the node u

W′
s/ W′

t W′
s/ W′

t ∈ R
d×d, represent role alignment matrices

between the source/target role and the self-role
z∗

u z∗
u ∈ R

d, which is the self-role of node u after alignment

Table 2. Pseudo-codes of DGATDDI

Algorithm 1. DGATDDI algorithm

1: Input: DDI matrix Y, feature matrix X, hyper-parameter: α, β
2: Output: DDI network Ŷ reconstructed by DGATDDI
3: Initialize:
4: for u = 1, 2, . . . , n do

5: z0
u ← xu

6: end for
7: while DGATDDI not converge do

8: for u = 1, 2, . . . , n do
9: su, ms

u ← sourceGAT(z0
v) | u → v ∈ //Eq.(4 − 7)

10: tu, mt
u ← targetGAT(z0

v) | u ← v ∈ E //Eq.(4 − 7)

11: zu ← MLP(z0
u)//Eq.(3)

12: end for
13: Calculate predicted probability Ŷ ← Eq.(8)

14:L ← Eq.(9)

15: Back-propagation to update parameters
16: end for

the edge between u and v is (u → v), (v → u), bidirectional
edge or even a nonedge (Fig. 1B).

DGAT-DDI architecture
To address the above task, this section designs a
DGAT-DDI for predicting asymmetric DDIs. The overall
architecture of DGAT-DDI is shown in Fig. 2, its notations
used in the following sections are listed in Table 1
and the pseudo-codes of its algorithm is provided in
Table 2.

Its encoder module learns the source role, the target
role and the self-role of a drug. The source role indicates
how the drug influences other drugs in the directed
interaction graph by a source GAT. In contrast, the target
role reflects how it is influenced by others by a tar-
get GAT. The self-role encodes its additional properties
(e.g. chemical structure) by an MLP. Moreover, DGAT-
DDI represents the aggressiveness of the source role and
the impressionability of the target role to capture how
the number of interaction partners of a drug affects its
interaction tendency w.r.t the role.
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Figure 1. Two tasks of predicting asymmetric DDIs. (A) The direction-specific task. The scenario judges how likely an interaction (u → v) from u to
v occurs. (B) The direction-blinded task. The scenario determines how possible the interaction between u and v is (u → v), (u ← v), or even a non-
interaction. Round nodes are drugs and solid directed lines between them indicate their asymmetric interactions. Dashed directed lines indicate drug
pairs of interest to be determined whether they are possible DDIs.

Figure 2. The overall architecture of DGAT-DDI. The encoder module is framed by green dotted lines, while the predictor is framed by red dotted lines.
Yellow elements indicate the source embedding, red elements indicate the target embedding, green elements indicate the self-role embedding. Though
the architecture of the source GAT is same as that of the target GAT, they handle different neighborhoods in terms of source/target nodes to encode
the asymmetry of interactions. Specifically, the source GAT characterize drug U by aggregating its outgoing neighbors (3 nodes highlighted by yellow),
while the target GAT characterizes drug V by aggregating its incoming neighbors (2 nodes highlighted by red in Fig. 2). In contrast, if the two drugs are
characterized in an undirected graph, drug U needs to aggregate all its neighbors (5 nodes except for V), while drug V needs to aggregate all its neighbors
(4 nodes except for U).

Its predictor contains three steps to determine poten-
tial asymmetric interaction between two drugs of inter-
est. For example, we attempt to determine whether there
is a potential interaction from u (a possible perpetrator
drug) to v (a possible victim drug), denoted as u → v.
First, it determines how likely u influences v by the
proximity between the source role of the perpetrator
u and the self-role of the victim v in addition to the
aggressiveness of the perpetrator. It then determines how
likely v is influenced by u by the proximity between
the target role of v and the self-role of u in addition to
the impressionability of the victim. Last, bi-directional
proximities are averaged as the final measure of how

likely the interaction from u to v occurs. In other words,
it determines how likely u is a perpetrator drug, and
meanwhile, v is a victim drug.

Source role encoder and target role encoder

Because of our emphasis on the difference between a
perpetrator drug and a victim drug, we characterize the
source role and the target role separately. In the directed
interaction graph G = {V, E}, we first define two kinds of
neighborhoods of a node u according to its source role
and target role, respectively. One is the neighborhood,
Ns = {v ∈ V | u → v ∈ E}, which represents the first-order
outgoing neighbors of u w.r.t. its source role. Another is
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Figure 3. Illustration of role embeddings. Left Panel: The attention mechanism employed by our model. Right Panel: The center node u1aggregates the
information from its neighbors by directed specific graph attention convolutions to generate its source embedding and target embedding respectively.
Note that the center node u1has no self-loop. Yellow arrows indicate neighboring nodes accounting for source embeddings, while red arrows indicate
neighboring nodes accounting for target embeddings.

Nt = {v ∈ V | u ← v ∈ E}, which represents the first-order
incoming neighbors of u w.r.t its target role.

Then, we leverage GATs [27] to aggregate the infor-
mation from neighboring nodes of u via the attention
mechanism. The attention score αr

uv of v to u with respect
to the role r ∈ {s, t} is defined as follows:

αr
uv =

exp
(

σ
(−→a �

r

[
Wrz0

u ‖ Wrz0
v

]))

∑
k∈Nr(u) exp

(
σ

(−→a �
r

[
Wrz0

u ‖ Wrz0
k

])) , (1)

where ‖ is the concatenation operation, Nr(u) is the
neighbors of node u w.r.t.r ∈ {s, t}, s is the source role
and t is the target role. Wr ∈ R

d×p is the weight matrix, p
is the dimension of drug properties, −→a r ∈ R

2d is a single-
layer feedforward neural network and σ is a nonlinear
activation function (i.e. LeakyReLU). The attention score
αr

uv aggregates different neighbors v under the same
role r of u. Differently from the original GAT, we discard
self-loops of the center node when using the attention
aggregation because its source role and its target role
are supposed to be distinguishable. In other words, the
center node cannot be its own outgoing neighbor and its
own incoming neighbor simultaneously in the directed
graph (Fig. 3).

Last, the embedding representations of the source role
and the target role are defined in a similar manner (i.e.
an operation of graph attention convolution) as follows:

su =
∑

v∈Ns(u)

αs
uvWsz0

v

tu =
∑

v∈Nt(u)

αt
uvWtz0

v (2)

.

In such a manner, the source role represents the outgo-
ing node neighborhood, while the target role represents
the incoming node neighborhood.

Self-role encoder

For a given asymmetric interaction u → v, we believe
that v, as one of the outgoing neighbors of u, is similar
to other outgoing neighbors of u. Meanwhile, u, as one of
the incoming neighbors of v, is similar to other incoming
neighbors of v. Thus, we introduce the self-role zv(u) of
v attached to the source role of u as well as the self-role
zu(v) of u attached to the target role of v.

For short, we simplify zv(u) as zv and zu(v) as zu. Consid-
ering that the source role su of u aggregates its outgoing
neighbors, we assume that zv and su are close in the
embedding space. Likewise, considering that the target
role tv of v gathers its incoming neighbors, we assume
that the target role tv and the self-role zu are close in
the embedding space. The proximity between su and zv

or that between tv and zu can be measured by similarity
metrics, such as inner product.

Suppose that H is the self-role encoder, defined as zu =
H(z0

u), where z0
u is the raw representation vector of a node

u, and zu is its self-role embedding.H is implemented by a
multilayer perceptron (MLP) with a nonlinear activation
layer as follows:

H
(
z0

u

) = σ
(
W2

(
σ

(
W1z0

u + b1
)) + b2

)
, (3)

where σ is the exponential linear unit [28], W1, W2, b1and
b2, are weights and bias items. The MLP is shared by all
the training nodes.

It is worth noting that self-role embeddings cannot be
directly compared with source role embeddings or target
role embeddings. The underlying reason is that self-role
embeddings are obtained by the MLP, while source/target
role embeddings are obtained by the GAT. In other words,
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they are from different embedding spaces. Therefore, an
additional alignment of embedding space is needed. See
also Section Predictor and loss function for details.

Aggressiveness and impressionability

The topology and dynamics of a network indicate that
a node having more connections tends to connect more
nodes [29]. Inspired by this observation, we believe that
the drug having more interactions tends to interact
with more drugs according to the DDI network. Thus,
two drugs even having similar features (e.g. chemical
structure) but having significantly different numbers of
interactions would have remarkably varied tendencies
to interact with other drugs.

In this context, we name the aggressiveness for source
roles and the impressionability for target roles. These two
items capture how the number of interaction partners of
a drug affects its interaction tendency. For example, the
greater the in-degree of node u, the greater its impres-
sionability to other nodes. The greater the out-degree of
node u, the greater its aggressiveness.

Considering that the aggregation of GAT reflects the
in-degree/out-degree of a node u, we adopt two extra
scalar items, ms

u and mt
u (Fig. 2). The former captures its

aggressiveness when calculating its source-role embed-
dings, while the latter captures its impressionability
when calculating its target-role embeddings. To obtain
the two items, we extend the output dimension into
(d + 1) during aggregating the information of outgoing/in-
coming neighbors for source/target roles. The first d
dimensions represent the source/target roles and the
last dimension represents the aggressiveness/impres-
sionability. Thus, Wr ∈ R

(d+1)×p and −→a r ∈ R
2(d+1) in Eqs

(1) and (2). Especially, to avoid the confusion of variable
names, we rename Eq. (2) as follows:

s∗
u =

∑
v∈Ns(u)

αs
uvWsz0

v, su = s∗
u[: −1], ms

u = s∗
u[: −1], (4)

t∗u =
∑

v∈Nt(u)

αt
uvWtz0

v, tu = t∗u[: −1], mt
u = t∗u[: −1] (5)

where s∗
u, t∗u ∈ R

(d+1), [:−1] denotes the operation using
the elements in the vector except for the last one, and
[−1] denotes the operation using the last element.

Predictor and loss function
For a given drug pair (u, v), we discriminate whether u
influences v (u → v) by four items, including the source
role of u aligned with the self-role of v, the target role
of v aligned with the self-role of u, the aggressiveness of
u and the impressionability of v. As shown in Fig. 2, the
asymmetry of the interaction u → v is characterized by
the source (perpetrator) view of u and the target (victim)
view of v jointly. Each view accounts for an assumption.

First, we hold the source-view-specific assumption
that the source role embedding su and the self-role
embedding zv are close in the embedding space if u
influences v. Naturally, by the inner product between

su and zv, we can measure how likely such an interaction
u → v is. As illustrated in Fig. 2, su is the embedding of
u generated by the source GAT, which characterizes u by
aggregating its outgoing neighbors (3 nodes highlighted
by light yellow, except for v) but not incoming neighbors
(2 white nodes). In contrast, zv is obtained through the
MLP. Because su and zv are not in the same embedding
space, their distance cannot be measured directly. To
address this issue, we make a role alignment W′

s to map
zv into the space of su. For simplicity, we leverage a
single-layer neural network as the alignment, denoted
as z∗

v = zvW′T
s , such that the inner product sT

uz∗
v can

be performed. It measures the proximity between
u (perpetrator, represented by the source GAT) and
v (victim, represented by the MLP) from the source
view, where the central node is u. Finally, the inner
product between su and z∗

v is linearly combined with the
aggressiveness ms

u (indicating the outgoing interaction
tendency of u) as the possibility of (u, v) being u → v
from the view of source role (i.e. α ∗ sT

uz∗
v + β ∗ ms

u). Here,
two hyper-parameters, α and β, are designed for tuning
the tradeoff between the proximity and the interaction
tendency.

Meanwhile, we consider the target-view-specific
assumption that the target role embedding tv and the
self-role embedding zu are close in the embedding space
if u influences v. Likewise, tT

vz∗
u measures the proximity

between u (perpetrator, represented by MLP) and v
(victim, represented by the target GAT) from the target
view, where the central node is v. As illustrated in Fig. 2,
the target GAT characterizes drug v by aggregating its
incoming neighbors (2 nodes highlighted by light red,
except for u) but not outgoing neighbors (2 white nodes
as well). From the view of the target role, we can calculate
the possibility of (u, v) being u → v by the target role
embedding tv obtained by the target GAT, the aligned
self-role embedding z∗

u = zuW′T
t and the impressionability

mt
v (i.e. α ∗ tT

vz∗
u + β ∗ mt

v).
So far, we characterize the interaction (e.g. u → v) in

an asymmetric manner from each view. To integrate the
two views, a sum operation is naturally used. Formally,
the two possibilities from two views are averaged as the
final possibility of (u, v) being an asymmetric interaction
u → v (denoted as ŷu,v). The formal definition of ŷu,v is as
follows:

ŷu,v = σ
(
α ∗ sT

uz∗
v + β ∗ ms

u + α ∗ tT
vz∗

u + β ∗ mt
v

)
, (6)

where z∗
v = zvW′T

s , z∗
u = zuW′T

t , su is the source role
embedding of u, tv is the target role embedding of v,
z∗ is the self-role of a node, ms

u is the aggressiveness of
u and mt

v is the impressionability of v, W′
s and W′

t are
the role alignment matrices between the source/target
role and the self-role, σ is the Sigmoid function and α

and βare the coefficients of the linear combination of
four items. Especially, α and βare the hyper-parameters
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which control the weights of node proximity and
aggressiveness/impressionability. Moreover, we enforce
α + β = 0.5 to meet the numerical constraint of
probability.

We determine the drug pair (u, v) as an asymmetric
interaction u → v if ŷu,v ≥ 0.5, otherwise no such an
asymmetric interaction. This formula is directly used in
Task 1, while both ŷu,v and ŷv,u are considered simulta-
neously in Task 2. In details, for a given unlabeled pair
of u and v, the trained model performed the prediction
twice in Task 2. One prediction determines how possible
the interaction is from u to v, while another determines
how possible the interaction is from v to u. Two predicting
scores ŷu,v and ŷv,u (being a direction-specific interaction)
were jointly to give the final decision. According to the
classification threshold 0.5, four combinations of the two
scores are (ŷu,v ≥ 0.5 and ŷv,u ≥ 0.5) denoting u →
v and v → u, (ŷu,v ≥ 0.5 and ŷv,u < 0.5) denoting
u → v, (ŷu,v < 0.5 and ŷv,u ≥ 0.5) denoting v → u
and (ŷu,v < 0.5 and ŷv,u < 0.5) denoting a noninterac-
tion. Since there is no bi-directional interaction among
asymmetric DDI entries, we cannot find the first com-
bination of scores. The remaining three were used to
indicate the final prediction for a given drug pair. In
such a manner, we determine the drug pair (u, v) as an
asymmetric interaction u → v in the direction-blind
predicting task.

Finally, the whole DGAT-DDI model is trained in an
end-to-end manner with the binary cross-entropy loss as
follows:

L = 1
N

∑
eu,v∈E

−yu,v log
(
ŷu,v

) − (
1 − yu,v

)
log

(
1 − ŷu,v

)
, (7)

where E is the edge set, yu,v is the ground truth label,
yu,v = 1 indicates existing asymmetric interactions or
yu,v = 0 indicates nonexisting interactions w.r.t. the
specific direction.

Experiments
Dataset and setup
We collected asymmetric DDI entries from version 5.17
of DrugBank released on 2 July 2020. The original dataset
contains 603 816 asymmetric interactions among 1974
approved small-molecular drugs. After a double-check,
we removed some drugs which have incorrect SMILES
strings or cannot be represented by Morgan fingerprints.
As a result, we obtained 1752 approved drugs and 504 468
asymmetric interactions among them.

Then, we organize these DDI entries into a directed
interaction network, where nodes are drugs and directed
edges are asymmetric interactions. In terms of network,
the maximum in-degree of a node is up to 1289, while
the maximum out-degree of a node is 1062. Both the
minimum out-degree and the minimum in-degree are
0 since some nodes have only one link. In addition, the
average clustering coefficient of the network is 0.346.

For each encoder in our DGAT-DDI, we set the dimen-
sions of input, embedding, output vectors in the fol-
lowing. Since GNN requires the vector representation
of each node in the network, we initially represented
each drug by Morgan fingerprints. Known as one of the
most popular circular fingerprints, it represents a drug
as a 1024-bit input vector, of which each bit indicates
a specific local structure presenting in the molecule. In
the source/target role embedding, we empirically set the
dimension of the output embedding to 16. The aggres-
siveness/impressionability is just a scalar. Moreover, in
the self-role embedding, we empirically considered two
hidden layers, whose nodes are 64 and 16 in addition to
its raw self-role z0

u ∈ R
1024 (Morgan fingerprints) in the

input layer.

State-of-the-art methods in comparison
To demonstrate the superiority of our DGAT-DDI model,
we selected four graph representation learning methods
as the baselines, including the standard Graph Autoen-
coder [19], Source/Target Graph AE [25], Gravity Graph
VAE [25] and DGGAN [26]. They are summarized as fol-
lows.

• Standard Graph Autoencoder [19] is a kind of
unsupervised model extending autoencoder to graph
structures. Their goal is to learn a node embedding,
i.e. a low dimensional vector space representation of
the nodes. Although the standard GAE is designed
for the undirected graph, we used it to illustrate how
its symmetric representation degrades the prediction
performance of asymmetric interactions.

• Source/Target Graph AE [25] builds a GCN based on
out-degree normalization to encode drugs, where the
odd and even bits of an embedding vector account for
the source role and the target role, respectively.

• Gravity Graph VAE [25], an extension of the graph
variant autoencoder on the directed graph, learns
asymmetric embeddings.

• DGGAN [26], a GAN-based directed graph embedding
framework, leveraging the adversarial mechanism
to learn each node’s source and target embeddings
together.

As GNN-based methods, the first three models com-
monly include a two-layer GCN encoder, which contains
a 64-d hidden layer and a 32-d output layer. We adopted
the suggested values of model parameters in the origi-
nal papers [19, 25], such as Adam as the optimizer, the
learning rate of 1e−2. For the GAN-based DGGAN, we
set the numbers of generator and discriminator training
iterations per epoch to 5 and 15, respectively. We also set
the learning rate to 1e−4 and the batch size to 128. After
tuning, we set the dimension of node embeddings to 128
for the best performance.

When training our DGAT-DDI, we set the dropout rate
to 0.6 in the embeddings, the learning rate to 1e−2,
the number of epochs per run to 200 and selected the
Adam algorithm as the optimizer [30]. Besides, we set
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Table 3. Comparison in direction-specific task (percentage)

Methods AUROC AUPRC ACC F1 PRECISION RECALL

Standard GAE 72.3 ± 0.4 66.1 ± 0.6 65.5 ± 0.2 73.0 ± 0.1 60.0 ± 0.2 93.3 ± 0.4
Source/Target GAE 80.5 ± 0.3 77.8 ± 0.6 73.0 ± 0.2 75.0 ± 0.6 70.0 ± 0.9 81.1 ± 2.5
Gravity GVAE 80.2 ± 1.4 75.2 ± 1.8 72.6 ± 1.1 76.8 ± 0.5 66.8 ± 1.4 90.4 ± 1.2
DGGAN 83.1 ± 0.2 80.6 ± 0.2 60.9 ± 2.7 71.8 ± 1.3 56.2 ± 1.8 99.2 ± 0.6
DGAT-DDI(ours) 95.1 ± 0.0 94.3 ± 0.0 88.6 ± 0.2 88.4 ± 0.1 86.9 ± 0.5 90.5 ± 0.9

the hyperparameter β by tuning its value from the list
{0.00,0.05, . . . ., 0.45} with the interval of 0.05. See also
Section Comparison results for the details.

Five-fold cross-validation was adopted to evaluate
the above models in the prediction of asymmetric DDIs.
Specifically, the whole dataset was randomly split into
a training set (containing 60% DDIs), a validation set
(containing 20% DDIs) and a testing set (containing 20%
DDIs). We used the training set to train the models,
the validation set to tune them and the testing set to
evaluate the generalization ability of the well-trained
models. Such a random split was repeated 20 times. All
the methods run on the same splits of the dataset. The
performance of these models was reported by an average
of 20 predictions.

The prediction results were measured by 6 popular
metrics, including the ‘Area Under the Receiver Operating
Characteristic’ (AUROC), the ‘Area Under the Precision
Recall Curve’ (AUPRC), the ‘Accuracy’ (ACC), F1-score,
Precision and Recall.

Comparison results
To generate negative samples, we adopted the sampling
strategy suggested in [22]. Considering the asymmetry
of DDI, we named a new term, nonexisting interactions
between drugs, as negative samples. Here, a nonexisting
asymmetric interaction accounts for the pair of two non-
interacting drugs or the directional inverse of a direction-
specific DDI (i.e. a fake interaction). For example, there
exists an asymmetric interaction (u, v) between node u
and node v (i.e. u → v), and there is no interaction
between u and another node w. Both the noninteracting
pair (u, w) and the fake interaction (v, u) are considered
as negative samples, while (u, v) is the positive sample.
After directly taking all true asymmetric interactions as
positive samples, we randomly selected the same num-
ber of negative samples among non-existent directed
interactions.

Based on the sampling strategy, we evaluated the per-
formance of the above models in two tasks, including a
direction-specific task (Table 3) and a direction-blinded
task (Table 4).

(1) Direction-specific task. This task discriminates
how possibly or whether a direction-specific interaction
between two nodes occurs, as illustrated in (Fig. 1A).

Overall, the comparison in Task 1 demonstrates the
significant superiority of our DGAT-DDI in terms of
six metrics. Specifically, except for Recall, DGAT-DDI

achieves 12 ∼ 30% improvements over AUROC, AUPRC,
ACC, F1 and Precision. Although Standard GAE and
DGGAN exhibit better recall values (93.3 and 99.2%,
respectively) than that of DGAT-DDI (90.5%), their
precision values are only ∼60%, which are much smaller
than that of DGAT-DDI (86.9%). The high recall shows
that a method can find almost all the positive samples,
while the low precision indicates that it predicts many
false positive cases. In other words, Standard GAE
and DGGAN tend to discriminate negative samples
(noninteractive pairs and fake interactions) as positive
samples (direction-specific interactions) in Task 1. Thus,
we pay more attention to F1, which is a more appropriate
metric by balancing Precision and Recall. Compared with
these two methods, DGAT-DDI exhibits 15.4 and 16.6%
improvements w.r.t. F1.

Moreover, we noted an interesting phenomenon, where
Standard GAE works much better than a random guess.
In our original thought, Standard GAE would just work
like a random guess because it ignores the direction
information. This finding pushed us to dig out the under-
lying reason. After checking, we found that the task of
direction-specific prediction degrades as a traditional
binary prediction task if the number of non-interactive
pairs is much more than that of fake interactions. In
such a circumstance, direction information in Task 1
is ignored because it is not easy to sample fake inter-
actions among many noninteracting pairs. This is why
Standard GAE works beyond a random guess. Therefore,
to address this issue, we evaluated these models on
Task 2, which emphasizes the importance of direction
asymmetry among DDIs.

(2) Direction-blind predicting task. This task deter-
mines how possible the interaction between u and v is
u → v, v → u, bidirectional interaction or a noninter-
action (Fig. 1B). Compared with the first task, Task 2 is
more important but more challenging since it requires
the reconstruction of interaction asymmetry.

To reflect the importance of direction asymmetry, we
adopted the same training as that in Task 1 but a different
testing manner as suggested in [22]. For a given unla-
beled pair of u and v, the trained model performed the
prediction twice. One prediction determines how possible
the interaction is from u to v, while another determines
how possible the interaction is from v to u. Two predicting
scores ŷu,v and ŷv,u (being a direction-specific interaction)
were jointly to give the final decision. According to the
classification threshold 0.5, four combinations of the two
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Table 4. Comparison in direction-blind predicting task (percentage)

Methods AUROC AUPRC ACC F1 PRECISION RECALL

Standard GAE 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 65.1 ± 0.1 50.0 ± 0.0 93.2 ± 0.3
Source/Target GAE 70.5 ± 0.5 72.3 ± 0.6 60.6 ± 0.9 67.8 ± 0.2 57.3 ± 1.0 83.2 ± 1.9
Gravity GVAE 55.4 ± 0.6 53.2 ± 0.6 52.9 ± 0.3 65.7 ± 0.4 51.7 ± 0.2 90.1 ± 1.4
DGGAN 75.3 ± 0.6 73.2 ± 0.5 63.2 ± 0.7 69.8 ± 0.5 60.1 ± 0.9 87.4 ± 1.3
DGAT-DDI (ours) 86.7 ± 0.1 85.4 ± 0.1 79.5 ± 0.1 77.1 ± 0.2 71.9 ± 0.5 89.1 ± 0.7

scores are (ŷu,v ≥ 0.5 and ŷv,u ≥ 0.5) denoting u → v
and v → u, (ŷu,v ≥ 0.5 and ŷv,u < 0.5) denoting u → v,
(ŷu,v < 0.5 and ŷv,u ≥ 0.5) denoting v → u and (ŷu,v <

0.5 and ŷv,u < 0.5) denoting a noninteraction. Since there
is no bi-directional interaction among asymmetric DDI
entries, we cannot find the first combination of scores.
The remaining three were used to indicate the final
prediction for a given drug pair. In such a manner, we
accomplished the direction-blind predicting task.

Again, the comparison with other methods in Task 2
demonstrates the significant superiority of our
DGAT-DDI overall. Specifically, except for Recall, DGAT-
DDI achieves 7 ∼ 26% improvements over AUROC, AUPRC,
ACC, F1 and Precision. Although Standard GAE and
Gravity GVAE exhibit better recall values (93.2 and
90.1%, respectively) than that of DGAT-DDI (89.1%), their
precision values are only ∼50% (just like a random guess
on interactions), which are much smaller than that of
DGAT-DDI (71.9%).

In summary, the comparisons in the two tasks demon-
strate the excellent ability of our DGAT-DDI to represent
asymmetric interactions.

(3) Direction-free predicting task. This task deter-
mines how possible the interaction between u and
v is a direction-free interaction or a noninteraction.
Compared with the above two tasks, the task is just
to fulfill a comprehensive comparison with advanced
deep learning models (i.e. DeepDDI [12], DDIMDL [14]
and KGNN [21]) for DDI prediction. Since these models
were originally designed for symmetric interactions but
not for asymmetric interactions, we modified our model
to accommodate symmetric interaction prediction by
treating symmetric interactions as bidirectional edges.
The results show that our DGATDDI outperforms both
DeepDDI and DDIMDL (Table 5). In addition, although
KGNN (achieving <1% improvement) is slightly better
than DGATDDI, it needs extra drug-related entries (e.g.
enzyme, target, gene, etc., except for chemical structures)
and abundant associations between entries to build
a KG. In many cases, these rich entries may not be
obtained easily. In contrast, our DGATDDI only needs
basic chemical structures. Thus, our DGATDDI can be a
competitive model for symmetric DDI prediction.

(4) Cold-start predicting task. The task evaluates how
well DGATDDI is under a more challenging experimental
setting (i.e. cold-start scenario), where the testing drugs
have no overlap with the training drugs. In this cold-
start scenario, we tried to predict the interaction between

Table 5. Comparison in direction-free predicting task
(percentage)

Methods AUROC AUPRC ACC

DeepDDI 93.2 92.5 85.6
DDIMDL 94.9 95.1 87.5
KGNN 99.1 98.9 94.6
DGAT-DDI(ours) 98.3 98.1 93.6

newly coming drugs with the known drugs in the net-
work. Because newly coming drugs have no known inter-
action (no neighbor), we use only the single-side role
embedding (i.e. sT

uz∗
v or tT

vz∗
u instead of sT

uz∗
v+tT

vz∗
u in the case

of u → v). In other words, we can obtain all three roles
of a known drug but obtain only the self-role of a new
drug because it has no neighbor in the network. To keep
the consistency with the ordinary scenario, DGATDDI
was run in Task 1 and Task 2 accordingly. The com-
parison between different experiment settings illustrates
6 ∼ 15% declines across the measuring metrics (Fig. 7).
These results demonstrate that the cold-start scenario is
more difficult than the ordinary scenario. An elaborate
model to handle the cold-start issue is expected.

Parameter tuning and ablation study
In this section, we first investigated how the hyper-
parameter in DGAT-DDI fluence its performance based
on the validation set. There is only one hyper-parameterβ
that reflects the trade-off between the source-role
embedding and the aggressiveness as well as the
trade-off between the target-role embedding and the
impressionability. We tuned the value of β from the
list {0.00,0.05, . . . ., 0.45} with the interval of 0.05. The
results on the two tasks measured by AUROC and AUPRC
show the increment of prediction performance when
increasing β and the decrement when increasing it
further (Fig. 4). Specifically, the peak is located on β=0.2
in Task 1 (Fig. 4A), while it is located on β=0.15 in Task
2 (Fig. 4B). The values were adopted by DGAT-DDI to run
all experiments.

Furthermore, we investigated how well each of the
major components in DGAT-DDI contributes to the pre-
diction by an ablation study. To this purpose, we made
four DGAT-DDI variants, denoted as w/o AI, w/o SR, w/o
TS and w/o RA, of which each removes one component,
respectively. Compared with the full model of DGAT-
DDI, the variant w/o AI removes both the aggressiveness
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Figure 4. Hyper-parameter tuning in Task 1 and Task 2.

Table 6. Comparison between DGAT-DDI and variants in ablation study

Model Task1 Task2

AUROC AUPRC ACC AUROC AUPRC ACC

w/o AI 94.7 93.9 87.6 85.0 83.9 78.2
w/o SR 93.2 92.1 85.8 81.2 80.0 71.4
w/o TS 92.8 91.6 85.2 80.6 79.2 71.0
w/o RA 93.9 92.9 86.3 84.1 83.0 74.1
Full 95.1 94.3 88.6 86.7 85.4 79.5

and the impressionability, w/o SR removes the self-role
embedding, w/o TS has no two sides of role embedding
but considers only single-side role embedding (i.e. sT

uz∗
v

instead of sT
uz∗

v + tT
vz∗

u in the case of u → v) and w/o RA
removes the role alignment from DGAT-DDI.

Overall, the comparison shows that DGAT-DDI outper-
forms all its variants across two tasks in terms of AUROC,
AUPRC and ACC (Table 6). The results demonstrate that
each of the major components in DGAT-DDI contributes
to the prediction. Especially, their contributions in Task 2
are greater than those in Task 1 because Task 2 requires
more information about interaction asymmetry (direc-
tion).

Among them, w/o TS accounts for the bigger decre-
ment of prediction performance (e.g. 6.1 ∼ 8.5% decline in
Task 2). This result reveals that both source role embed-
dings and target role embeddings exhibit the most impor-
tant contribution. The underlying reason is that they
capture how a drug influences other drugs and how it is
influenced by others among asymmetric DDIs. Similarly,
the performance decline (5.1 ∼ 8.5%) caused by w/o SR
reflects that self-role embeddings are crucial as well
because it contains drugs’ own properties.

Moreover, 2.4 ∼ 5.4% decline caused by w/o RA reveals
that the role alignment component is essential to repre-
sent drugs in asymmetric interactions, because source/-
target role embeddings and self-role embeddings are
from different spaces.

In addition, ∼1.5% decline made by w/o AI reflects
that both the aggressiveness and the impressionabil-
ity are helpful for drug representation. The underlying

reason is that they capture how the number of interac-
tion partners of a drug affects its interaction tendency.

In general, all these components play indispensable
roles in representing and predicting asymmetric DDIs.

Case study 1: assumption visualization
To make a clear understanding of our assumptions, we
performed a visualization of embedding space. Taking
Idarubicin as an example, we leverage t-SNE [31] to
illustrate our assumption that the source role embedding
su and the self-role embedding zv are close in the
embedding space if u influences v. Idarubicin has 382
interactions, of which 257 are outgoing interactions and
125 are incoming interactions. As shown in Fig. 5, the
source role of Idarubicin (marked by a green triangle),
the source-aligned self-role of its outgoing neighbors
(victims, marked green dots) and the source-aligned self-
role of 300 randomly sampled drugs not interacting with
Idarubicin (nonvictims, marked by blue dots) are shown.
In terms of source role, we found two separate clusters,
where Idarubicin is in the cluster of outgoing neighbors,
but is far away from the cluster of noninteracting drugs.
Similar results show that Idarubicin (marked by a red
square) is near to its incoming neighbors (perpetrators,
marked red dots) but far away from its noninteracting
drugs (nonperpetrators, marked by light red dots) in
terms of target role. In brief, the case visualization
demonstrates that DGAT-DDI models the assumptions.

Moreover, we attempted to illustrate the assumption
that the number of interaction partners of a drug affects
its interaction tendency. We attempted to illustrate the
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Figure 5. Visualization of Interaction Prediction. In our model, the source role of a drug and its outgoing neighbor, as well as the target role of a drug
and its incoming neighbor are close in the latent space. Self-role of non-edge drug will stay away from the source role and the target role.

Figure 6. Interaction tendency. (A) Impressiveness versus in-degree, (B) aggressiveness versus out-degree. The number of interaction partners of a drug
affects its interaction tendency. Based on the observed moderate Spearman correlation, the larger the node degree, the larger the impressiveness/ag-
gressiveness.

potential association between the number of interac-
tion partners and DDI tendency indicated by out-degree
and in-degree (shown in the left panel and the right
panel in Fig. 6, respectively). The results show a mod-
erate correlation in both cases. In detail, the Spearman
correlation coefficient between the aggressiveness and
the out-degree is 0.55 (with the P-value =1e−139), while
that between the impressiveness and the in-degree is
0.67 (with the P-value = 7e−232). The illustration supports
that the aggressiveness/impressionability in DGAT-DDI

captures the information that how the number of outgo-
ing/incoming interactions of a drug affects its interaction
tendency.

Case study 2: novel prediction
In this section, we investigated the ability of DGAT-DDI
in finding unobserved DDIs. Considering the update of
DrugBank annotates more unobserved interactions, we
performed a version-independent validation to achieve
our investigation as follows.
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Figure 7. Comparison with cold-start scenario.

Table 7. Top 10 asymmetric DDI candidates by DGAT-DDI. Interaction indicates whether the interaction between the two drugs is
predicted correctly, and the direction indicates whether the direction of asymmetric interaction between the two drugs is predicted
correctly

Rank Perpetrator drug Victim drug Description Interaction Direction

1 Flunarizine Darifenacin The metabolism of Flunarizine can be decreased when combined with
Darifenacin.

√ -

2 Dapagliflozin Ephedrine The risk or severity of Cardiac Arrhythmia can be increased when
Ephedrine is combined with Dapagliflozin.

√ √

3 Clomipramine Sodium
aurothiomalate

Clomipramine may decrease the excretion rate of Sodium
aurothiomalate which could result in a higher serum level.

√ √

4 Capsaicin Hexafluronium The therapeutic efficacy of Hexafluronium can be decreased when
used in combination with Capsaicin.

√ √

5 Paroxetine Cephalexin NA - -
6 Hydrocortisone Glasdegib The metabolism of Glasdegib can be increased when combined with

Hydrocortisone.

√ √

7 Alogliptin Nylidrin The risk or severity of hypoglycemia can be increased when Nylidrin is
combined with Alogliptin.

√ √

8 Nafcillin Olaparib The metabolism of Olaparib can be increased when combined with
Nafcillin.

√ √

9 Lomitapide Quinine The metabolism of Lomitapide can be increased when combined with
Quinine.

√ -

10 Methscopolamine Fenoterol The risk or severity of adverse effects can be increased when Fenoterol
is combined with Methscopolamine.

√ √

First, we run a transductive prediction on the dataset,
collected from version 5.17 of DrugBank (released on 2
July 2020). The transductive prediction inferred potential
DDIs among unlabeled drug pairs. Then, after sorting
these drug pairs according to their predicting scores, we
picked up the top-10 asymmetric DDI candidates. For
unlabeled drug pairs, the higher predicting scores, the
higher probabilities to be interactions. Last, we validated
the candidates according to their labels provided by ver-
sion 5.18 of DrugBank (released on 3 January 2021) since
we suppose the advanced version is more accurate.

Overall, the validation shows that a significant frac-
tion of novel predicted asymmetric DDIs (7 out of 10)
is confirmed (see Table 7). In detail, seven asymmetric
interactions are predicted correctly, two interactions are
predicted correctly but with opposite directions (the first
and the ninth) and one interaction is predicted wrongly
(the fifth). In summary, this investigation demonstrates

the inspiring ability of DGAT-DDI on predicting asymmet-
ric DDIs in practice.

Conclusions
This paper has proposed a novel architecture of DGAT-
DDI for predicting asymmetric interactions between
drugs. DGAT-DDI characterizes asymmetric DDIs by
source-role embeddings, target-role embeddings and
self-role embeddings. Moreover, it considers how the
number of interaction partners of a drug affects its
interaction tendency by the aggressiveness of the
source role and the impressionability of the target
role. Furthermore, it discriminates potential asymmetric
interactions based on two assumptions. The first is that
the source role of a drug is close to the self-role of its
outgoing neighbors. The second is that the target role of
a drug is close to the self-role of its incoming neighbors
in the embedding space.
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In the experiments, the significant superiority of
DGAT-DDI is demonstrated in the comparison with four
state-of-the-art approaches under both a direction-
specific predicting task and a direction-blinded task.
Moreover, how well each component of DGAT-DDI
contributes to its ability is revealed by the ablation study.
Finally, its practical ability to predict novel asymmetric
interactions is demonstrated by the case study, where
7 candidates are validated by the lasted release of
DrugBank.

In the coming future, DGAT-DDI will be extended to
accommodate multitype asymmetric interactions and
also be improved to predict asymmetric interactions for
newly coming drugs (i.e. the cold-start scenario).

Code and data availability
Source codes are freely available at https://github.com/
F-windyy/DGATDDI.

Key Points

• DGAT-DDI generates two asymmetric embeddings of the
source role and the target role for a drug, respectively.
Its source role indicates how it influences other drugs
in DDIs. Its target role represents how it is influenced
by others. Its self-role is aligned into the source role
space and the target role space, respectively, to reflect
the proximity of the drug pair being an asymmetric
interaction.

• Moreover, DGAT-DDI learns the aggressiveness of the
source role and the impressionability of the target role
to reflect how the number of interaction partners of a
drug affects its interaction tendency.

• To the best of our knowledge, DGAT-DDI is the first
approach for predicting asymmetric interactions among
drugs. Its superiority is demonstrated by a direction-
specific predicting task, a direction-blinded task as well
as a case study of novel asymmetric DDI prediction.
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